Skip to content

DE THI TRAC NGHIEM

  • latex

DE THI TRAC NGHIEM

  • Home » 
  • Blog » 
  • Giải SGK Toán 12 Bài 13 (Kết nối tri thức): Ứng dụng hình học của tích phân

Giải SGK Toán 12 Bài 13 (Kết nối tri thức): Ứng dụng hình học của tích phân

By admin 17/07/2024 0

[ad_1]

Giải bài tập Toán 12 Bài 13: Ứng dụng hình học của tích phân 

HĐ1 trang 19 Toán 12 Tập 2: Xét hình phẳng giới hạn bởi đường thẳng y = f(x) = x + 1, trục hoành và hai đường thẳng x = −2; x = 1 (H.4.12).

a) Tính diện tích S của hình phẳng này.

b) Tính ∫−21fxdx và so sánh với S.

HĐ1 trang 19 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a)

HĐ1 trang 19 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Gọi A(−2; 0), C(−1; 0), D(1; 0) và B, E lần lượt là giao điểm của đường thẳng x = −2, x = 1 với đường thẳng y = x + 1.

Do đó B(−2; −1), E(1; 2).

Khi đó S = S∆ABC + S∆CDE = 12AB.AC+12CD.DE=12.1.1+12.2.2=52

b) ∫−21fxdx=∫−21x+1dx=∫−2−1x+1dx+∫−11x+1dx=−∫−2−1x+1dx+∫−11x+1dx

=−x22+x−2−1+x22+x−11=12+32+12=52

Vậy S=∫−21fxdx

Luyện tập 1 trang 20 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi parabol y = x2 – 4, trục hoành và hai đường thẳng x = 0; x = 3 (H.4.15).

Luyện tập 1 trang 20 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Diện tích hình phẳng cần tính là:

∫03x2−4dx=∫02x2−4dx+∫23x2−4dx=∫024−x2dx+∫23x2−4dx

=4x−x3302+x33−4x23=163−3+163=233

HĐ2 trang 20 Toán 12 Tập 2: Gọi S là diện tích hình phẳng giới hạn bởi đồ thị của các hàm số f(x) = −x2 + 4x, g(x) = x và hai đường thẳng x = 1, x = 3 (H.4.16).

a) Giả sử S1 là diện tích hình phẳng giới hạn bởi parabol y = −x2 + 4x, trục hoành và hai đường thẳng x = 1, x = 3; S2 là diện tích hình phẳng giới hạn bởi đường thẳng y = x, trục hoành và hai đường thẳng x = 1, x = 3. Tính S1, S2 và từ đó suy ra S.

b) Tính ∫13fx−gxdx và so sánh với S.

HĐ2 trang 20 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Ta có S1=∫13−x2+4xdx=∫13−x2+4xdx=−x33+2x213=9−53=223

S2=∫13xdx=∫13xdx=x2213=92−12=4

Do đó S = S1 – S2 = 223−4=103

b) ∫13fx−gxdx=∫13−x2+4x−xdx=∫13−x2+3xdx

=∫13−x2+3xdx=−x33+3.x2213=92−76=103

Vậy S=∫13fx−gxdx

Luyện tập 2 trang 21 Toán 12 Tập 2: Tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y=x, y = x – 2 và hai đường thẳng x = 1, x = 4.

Lời giải:

Luyện tập 2 trang 21 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích hình phẳng cần tính là:

S=∫14x−x+2dx=∫14x−x+2dx=23x32−x22+2x14=163−136=196

Vận dụng 1 trang 22 Toán 12 Tập 2: Ta biết rằng hàm cầu liên quan đến giá p của một sản phẩm với nhu cầu của người tiêu dùng, hàm cung liên quan đến giá p của sản phẩm với mức độ sẵn sàng cung cấp sản phẩm của nhà sản xuất. Điểm cắt nhau (x0; p0) của đồ thị hàm cầu p = D(x) và đồ thị hàm cung p = S(x) được gọi là điểm cân bằng.

Các nhà kinh tế gọi diện tích của hình giới hạn bởi đồ thị hàm cầu, đường ngang p = p0 và đường thẳng đứng x = 0 là thặng dư tiêu dùng. Tương tự, diện tích của hình giới hạn bởi đồ thị của hàm cung, đường nằm ngang p = p0 và đường thẳng đứng x = 0 được gọi là thặng dư sản xuất, như trong Hình 4.19.

(Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Giả sử hàm cung và hàm cầu của một loại sản phẩm được mô hình hóa bởi:

Hàm cầu: p = −0,36x + 9 và hàm cung: p = 0,14x + 2, trong đó x là số đơn vị sản phẩm. Tìm thặng dư tiêu dùng và thặng dư sản xuất cho sản phẩm này.

Vận dụng 1 trang 22 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Hoành độ điểm cân bằng là nghiệm của phương trình:

−0,36x + 9 = 0,14x + 2 ⇔ x = 14.

Tọa độ điểm cân bằng là (14; 3,96).

Thặng dư tiêu dùng là:

S1=∫014−0,36x+9−3,96dx=∫014−0,36x+5,04dx

=∫014−0,36x+5,04dx

Thặng dư sản xuất là:

S2=∫0143,96−0,14x−2dx=∫0141,96−0,14xdx

=∫0141,96−0,14xdx=1,96x−0,07x2014=13,72

HĐ3 trang 22 Toán 12 Tập 2: Xét hình trụ có bán kính đáy R, có trục là trục hoành Ox, nằm giữa hai mặt phẳng x = a và x = b (a < b) (H.4.20).

a) Tính thể tích V của hình trụ.

b) Tính diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b). Từ đó tính ∫abSxdx và so sánh với V.

HĐ3 trang 22 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Độ dài chiều cao hình trụ là: h = b – a.

Thể tích của hình trụ là: V = πR2h = πR2(b – a).

b) Diện tích mặt cắt S(x) khi cắt hình trụ bởi mặt phẳng vuông góc với trục Ox là

S(x) = πR2.

Ta có ∫abSxdx=∫abπR2dx=πR2xab=πR2b−a

Vậy V=∫abSxdx

Vận dụng 2 trang 23 Toán 12 Tập 2: Tính thể tích của khối chóp cụt đều có diện tích hai đáy là S0, S1 và chiều cao bằng h (H.4.24). Từ đó suy ra công thức tính thể tích khối chóp đều có diện tích đáy bằng S và chiều cao bằng h.

Vận dụng 2 trang 23 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Chọn hệ trục tọa độ Oxyz như hình vẽ.

Gọi a, b lần lượt là khoảng cách từ O đến đáy nhỏ và đáy lớn của hình chóp. Khi đó chiều cao của hình chóp cụt là h = b – a.

Thiết diện của khối chóp cụt khi cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x (a ≤ x ≤ b) là một đa giác đều đồng dạng với đáy lớn của hình chóp cụt theo tỉ số đồng dạng là xb

Khi đó SxS1=x2b2⇒Sx=x2b2.S1

Do đó thể tích khối chóp cụt đều là:

V=∫abSxdx=∫abx2b2S1dx=S1b2.x33ab=S13b2b3−a3

=b−a3b2.S1b2+S1ab+S1a2=h3.S1+S1ab+S1ab2

Vì S0S1=ab2⇒S0=S1.ab2; S0S1=S12.ab2⇒S0S1=S1.ab

Do đó V=h3.S1+S1.S0+S0

Khối chóp đều được coi là khối chóp cụt đều khi S0 = 0.

Do đó thể tích khối chóp đều là V=13.S.h

HĐ4 trang 24 Toán 12 Tập 2: Xét hình phẳng giới hạn bởi đồ thị hàm số fx=12x, trục hoành và hai đường thẳng x = 0, x = 4. Khi quay hình phẳng này xung quanh trục hoành Ox ta được khối nón có đỉnh là gốc O, trục là Ox và đáy là hình tròn bán kính bằng 2 (H.4.25).

a) Tính thể tích V của khối nón.

b) Chứng minh rằng khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là f(x), do đó diện tích mặt cắt là S(x) = πf2(x). Tính π∫04f2xdx và so sánh với V.

HĐ4 trang 24 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Ta có chiều cao của khối nón là h = 4, bán kính đáy của khối nón là R = 2.

Do đó thể tích của khối nón là V=13πR2h=13π.22.4=16π3

b)

HĐ4 trang 24 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Khi cắt khối nón bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ bằng x (0 ≤ x ≤ 4) thì mặt cắt thu được là một hình tròn có bán kính là fx=12x

Khi đó diện tích mặt cắt là Sx=πf2x=π4x2

Ta có π∫04f2xdx=π∫04x24dx=π4∫04x2dx=π4.x3304=16π3

Vậy V=π∫04f2xdx

Vận dụng 3 trang 25 Toán 12 Tập 2: a) Tính thể tích của khối tròn xoay sinh ra khi quay hình thang vuông OABC trong mặt phẳng Oxy với OA = h, AB = R và OC = r, quanh trục Ox (H.4.28).

b) Từ công thức thu được ở phần a, hãy rút ra công thức tính thể tích của khối nón có bán kính đáy bằng R và chiều cao h.

Vận dụng 3 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

a) Chọn hệ trục như hình vẽ.

Khi đó ta có C(0; r), B(h; R). Suy ra BC→=h;R−r

Phương trình đường thẳng BC qua C và nhận n→=r−R;h có dạng:

(r – R)x + h(y − r) = 0 hay y=hr+R−rxh

Thể tích cần tính là:

V=π∫0hhr+R−rxh2dx=π∫0hr2+2r.R−rhx+R−rhx2dx

=πr2x+r.R−rh.x2+R−rh2.x330h=πr2h+Rr−r2.h+R−r2.h3

=πr2h+Rrh−r2h+13R2h−23Rrh+13r2h=π13R2h+13Rrh+13r2h

=13πhR2+Rr+r2

b) Khi r = 0 thì khối nón cụt trở thành khối nón có chiều cao h, bán kính đáy là R.

Do đó V=13πR2h

Bài 4.14 trang 25 Toán 12 Tập 2: Tính diện tích của hình phẳng được tô màu trong Hình 4.29.

Bài 4.14 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Diện tích cần tính là:

S=∫045x−x2−xdx=∫044x−x2dx

=∫044x−x2dx=2x2−x3304=323

Bài 4.15 trang 25 Toán 12 Tập 2: Tính diện tích của hình phẳng giới hạn bởi các đường:

a) y = ex, y = x2 – 1, x = −1, x = 1;

b) y = sinx, y = x, x=π2,x=π;

c) y = 9 – x2, y = 2x2, x=−3,x=3;

d) y=x, y = x2, x = 0, x = 1.

Lời giải:

a)

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=∫−11ex−x2+1dx=∫−11ex−x2+1dx

=ex−x33+x−11=e+23−e−1+23=e2−1e+43

b) Diện tích cần tính là:

S=∫π2πsinx−xdx=∫π2πx−sinxdx

=x22+cosxπ2π=π22−1−π28=3π28−1

c)

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=∫−339−x2−2x2dx=∫−339−3x2dx=∫−339−3x2dx

=9x−x3−33=93−33+93−33=123

d)

Bài 4.15 trang 25 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Diện tích cần tính là:

S=∫01x−x2dx=∫01x−x2dx=23x32−x3301=13

Bài 4.16 trang 25 Toán 12 Tập 2: Các nhà kinh tế sử dụng đường cong Lorenz để minh họa sự phân phối thu nhập trong một quốc gia. Gọi x là đại diện cho phần trăm số gia đình trong một quốc gia và y là phần trăm tổng thu nhập, mô hình y = x sẽ đại diện cho một quốc gia mà các gia đình có thu nhập như nhau. Đường cong Lorenz y = f(x), biểu thị phân phối thu nhập thực tế. Diện tích giữa hai mô hình này, với 0 ≤ x ≤ 100, biểu thị “sự bất bình đẳng về thu nhập” của một quốc gia. Năm 2005, đường con Lorenz của Hoa Kỳ có thể được mô hình hóa bởi hàm số

y = (0,00061x2 + 0,0218x + 1723)2, 0 ≤ x ≤ 100,

trong đó x được tính từ các gia đình nghèo nhất đến giàu có nhất (Theo R.Larson, Brief Calculus: An Applied Approach, 8th edition, Cengage Learning, 2009).

Tìm sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005.

Lời giải:

Sự bất bình đẳng thu nhập của Hoa Kỳ vào năm 2005 là:

S=∫01000,00061x2+0,0218x+17232−xdx

Toán 12 Bài 13 (Kết nối tri thức): Ứng dụng hình học của tích phân (ảnh 1)

= 297945768,2.

Bài 4.17 trang 26 Toán 12 Tập 2: Tính thể tích của khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi các đường sau xung quanh trục Ox: y = 2x – x2, y = 0, x = 0, x = 2.

Lời giải:

Thể tích cần tìm là:

V=π∫022x−x22dx=π∫024x2−4x3+x4dx=π43x3−x4+x5502=16π15

Bài 4.18 trang 26 Toán 12 Tập 2: Khối chỏm cầu có bán kính R và chiều cao h (0 < h ≤ R) sinh ra khi quay hình phẳng giới hạn bởi cung tròn có phương trình y=R2−x2, trục hoành và hai đường thẳng x = R – h, x = R xung quanh trục Ox (H.4.30). Tính thể tích của khối chỏm cầu này.

Bài 4.18 trang 26 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

Lời giải:

Thể tích cần tìm là:

V=π∫R−hRR2−x2dx=πR2x−x33R−hR

=πR3−R33−R2R−h+R−h33

=πR3−R33−R3+R2h+R33−R2h+Rh2−h33

=πRh2−h33=πh2R−h3

Bài 4.19 trang 26 Toán 12 Tập 2: Cho tam giác vuông OAB có cạnh OA = a nằm trên trục Ox và AOB^=α0<α≤π4. Gọi β là khối tròn xoay sinh ra khi quay miền tam giác OAB xung quanh trục Ox (H.4.31).

a) Tính thể tích V của β theo a và α.

b) Tìm α sao cho thể tích V lớn nhất

Lời giải:

Bài 4.19 trang 26 Toán 12 Tập 2 | Kết nối tri thức Giải Toán 12

a) Xét tam giác OAB vuông tại A, có AB = OA.tanα = a.tanα.

Khi quay miền tam giác OAB xung quanh trục Ox ta được khối nón có bán kính đáy r = AB = a.tanα và chiều cao h = OA = a.

Do đó V=13πr2h=13πa3tan2α

b) Có V‘=13πa3.2tanα.1cos2α

Vì 0<α≤π4 => 0 < tanα ≤ 1 nên V’ > 0. Do đó V là hàm số đồng biến trên 0;π4

Do đó max0;π4V=Vπ4=13πa3

Vậy α=π4 thì thể tích khối nón là lớn nhất.

Xem thêm các bài giải bài tập Toán lớp 12 Kết nối tri thức hay, chi tiết khác:

Bài 12. Tích phân

Bài 13. Ứng dụng hình học của tích phân

Bài tập cuối chương 4

Bài 14. Phương trình mặt phẳng

Bài 15. Phương trình đường thẳng trong không gian

Bài 16. Công thức tính góc trong không gian

[ad_2]
PBN WEB EDU MMO TD

Share
facebookShare on FacebooktwitterShare on TwitterpinterestShare on Pinterest
linkedinShare on LinkedinvkShare on VkredditShare on ReddittumblrShare on TumblrviadeoShare on ViadeobufferShare on BufferpocketShare on PocketwhatsappShare on WhatsappviberShare on ViberemailShare on EmailskypeShare on SkypediggShare on DiggmyspaceShare on MyspacebloggerShare on Blogger YahooMailShare on Yahoo mailtelegramShare on TelegramMessengerShare on Facebook Messenger gmailShare on GmailamazonShare on AmazonSMSShare on SMS
Post navigation
Previous post

Giải SGK Toán 12 Bài 3 (Cánh diều): Tích phân

Next post

Giải SGK Toán 12 Bài 15 (Kết nối tri thức): Phương trình đường thẳng trong không gian

admin

Related Posts

test quiz bank

tn thpt 2025

Test quiz type exam 1.7 group

Leave a Comment Hủy

Bạn phải đăng nhập để gửi bình luận.

Bài viết mới

  • test quiz bank 18/06/2025
  • tn thpt 2025 28/05/2025
  • Test quiz type exam 1.7 group 11/05/2025
  • quiz practice có trộn 29/04/2025
  • test quiz post 1.6 số array !q(2,4,6)! 19/03/2025

Danh mục

  • Blog1.179
  • GBT T12 CT28

Meta

  • Đăng ký
  • Đăng nhập
  • RSS bài viết
  • RSS bình luận
  • WordPress.org
Copyright © 2025 DE THI TRAC NGHIEM - Powered by Nevothemes.
Menu
  • latex
Menu

  • Đăng ký
  • Lost your password ?